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A  simulation-based  fuzzy  multi-criteria  decision  analysis  (SFMCDA)  method  is  developed  for  supporting
the  selection  of  remediation  strategies  for  petroleum  contaminated  sites.  SFMCDA  integrates  process
modeling  (using  BIOPLUME  III) and  fuzzy  ranking  (based  on fuzzy  TOPSIS)  into  a general  management
framework,  and  can  compare  various  remediation  alternatives,  in light  of  both  cost-risk  tradeoffs  and
uncertainty  impacts.  The  proposed  method  is applied  to  a hypothetical  contaminated  site  suffering  from
a benzene  leakage  problem.  Six remediation  alternatives  are  taken  into  consideration,  including  natu-
ite remediation
uzzy set theory
ulti-criteria decision analysis

enzene
OPSIS

ral attenuation  (NA),  pump-and-treat  (PAT),  enhanced  natural  attenuation  (ENA),  and  a  number  of their
combinations.  Six  fuzzy  criteria,  including  both  cost  and  risk  information,  are  used  to compare  different
alternatives  through  fuzzy  TOPSIS.  The  results  demonstrates  that  the  proposed  method  can  help  system-
atically  analyze  fuzzy  inputs  from  contaminant  transport  modeling,  cost  implications  and  stakeholders’
preferences,  and  provide  useful  ranking  information  covering  a  variety  of decision-relevant  remediation
options  for  decision  makers.

Crown Copyright ©  2012 Published by Elsevier B.V. All rights reserved.
. Introduction

Spill and leakage of petroleum hydrocarbons have resulted
n significant environmental concerns in soil and groundwater
ystems. Removal of such contaminants is often expensive and
ime-consuming [1]. Over the past years, many remediation tech-
iques (e.g. pump and treat, bioremediation) have been proposed
o remove petroleum contaminants from the subsurface [2].  Due to
he complexity of the remediation processes, decision-makers are
ften faced with difficulties in identifying the most desirable reme-
iation strategy from the pool containing a wide range of options
ith varied remedial efficiencies and costs [3].  It is thus desired

hat effective tools for supporting site remediation decisions be
dvanced [4,5].

In fact, identification of a suitable subsurface remediation tech-
ology is a complex process, involving consideration of multiple

actors such as environmental impact, social acceptance, and sys-
em cost [6,7]. Multi-criteria decision analysis (MCDA) is a potential

ool for dealing with such discrete decision-making problems [8,9],
here the potential management scenarios are compared and

anked based on a number of pre-defined criteria. Groundwater

∗ Corresponding author. Tel.: +86 10 61772018.
E-mail address: guohhuang@gmail.com (G.H. Huang).

304-3894/$ – see front matter. Crown Copyright ©  2012 Published by Elsevier B.V. All ri
oi:10.1016/j.jhazmat.2012.02.027
flow and contaminant transport modeling is a critical compo-
nent in supporting remediation design [10–13].  MCDA is also
advantageous in linking simulation to the decision-making frame-
work for obtaining quantitative information related to cost and
risk [9].  The conventional MCDA approach typically expresses all
inputs as deterministic, however, in a real world groundwater
remediation system, imprecise and vague information may  exist
[13–19].  It is thus desired that a systematic assessment approach
for combining inputs from contaminant concentrations obtained
by simulation model, health-risk guidelines, system costs analysis
and stakeholder views be advanced to accomplish a sound analysis
of available remediation options under uncertainty.

Previously, many inexact MCDA techniques were developed
for groundwater remediation. Bau and Mayer [20] developed a
stochastic data-worth framework to select the optimal design
of groundwater remediation operation that could minimize the
cost and comply with cleanup goals under parameter uncer-
tainty. In this method, a stochastic inverse flow and transport (FT)
model was  applied to integrate data towards the estimation of
the geostatistical parameters. Singh and Minsker [21] proposed
a robust multi-objective optimization method on a field-scale

groundwater remediation design. Latin Hypercube sampling, a
noisy multi-objective genetic algorithm were used within the opti-
mization framework. Qin et al. [22] advanced a simulation-based
stochastic MCDA method to choose remediation scenarios at a

ghts reserved.

dx.doi.org/10.1016/j.jhazmat.2012.02.027
http://www.sciencedirect.com/science/journal/03043894
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etroleum-contaminated site in western Canada, where Monte
arlo simulation and deterministic MCDA were combined to ana-

yze the final ranking outputs. However, the method would be
estricted if the uncertainties could not be addressed by stochastic
istributions. Many studies in various fields have focused on apply-

ng fuzzy set theory to MCDA applications, in the sense that the
mprecise and vague information regarding our knowledge of the
tate of a system or of human preferences in making trade-off deci-
ions could better be described by fuzzy sets [23–25].  Guan and Aral
11,15] integrated fuzzy simulation into an optimization model for
he optimal design of pump-and-treat systems under uncertainty.
owever, the authors considered only uncertainty in the simula-

ion parameter. Chu and Chang [13] developed a multi-objective
ynamic groundwater remediation by integrating fuzzy inference
ystem (ANFIS) with constrained differential dynamic program-
ing model to acquire time-varying pumping rates. The authors

onducted the ANFIS procedure on the base of fuzzy if-then rules
nd fuzzification interface. Kerachian et al. [26] developed a fuzzy
ame theory approach combined with groundwater quantity and
uality simulation models and the optimization model for ground-
ater resources management. The fuzzy set theory was utilized

o define the utility functions of decision makers. In fact, differ-
nt experts/stakeholders may  have different preferences, which
ay  lead to significant variations of the rules or values. Li et al. [3]

dvanced a fuzzy MCDA approach to help screen remedial alterna-
ives for a petroleum-contaminated site in western Canada, where
he approach was  capable of dealing with uncertainty in the impact
cores expressed as linguistic judgments (e.g. such as ‘high risk’,
high cost’) and experts’ opinions.

In the real-world applications, it has been widely recognized
hat the decision-making process for site remediation is associated
ith uncertainties from multiple sources, including (i) measure-
ent and/or estimation errors related to hydrogeological and

hysicochemical parameters (e.g. dispersivity and porosity) [27];
ii) preferences of stakeholders with respect to the prioritization
f criteria for a decision making process [8]; (iii) descriptions of
vailable decision alternatives based on quantitative or qualitative
ata that are relying on expert opinions or experiential knowledge
28]. The fuzzy MCDA procedures must be able to address these
ncertainties, along with other subjective uncertainties from either
anking criteria or qualitative description of information, for a more
omprehensive consideration of uncertainties in site-remediation
ecisions.

Thus, this study aims to develop a simulation-based fuzzy MCDA
SFMCDA) method for supporting selection of optimal remedial
echnologies for benzene-contaminated sites. The uncertainties
ssociated with both subsurface conditions and human judgments
re tackled as fuzzy sets. A hypothetical benzene-contaminated
ite is used as a case study to demonstrate the applicability of the
roposed method. The paper is organized as follows: (Section 2)
evelopment of the SFMCDA method; (Section 3) case study, results
nalysis and discussions; (Section 4) conclusion.

. Methodology

SFMCDA consists of two major components: (1) a fuzzy pro-
ess simulation and a (2) fuzzy multi-criteria decision analysis. The
eneral framework is shown in Fig. 1. The fuzzy process simulation
s used to predict contaminant fate and transport under various
emporal/spatial scales and remediation scenarios. The obtained

ontaminant concentrations and the related cost implications are
resented as fuzzy sets, which will serve as uncertain inputs for
CDA evaluation. The fuzzy technique ordered preference by simi-

arity to the ideal solution (i.e. fuzzy TOPSIS) method then is applied
aterials 213– 214 (2012) 421– 433

to rank various alternatives. The detailed procedures are described
in the following sections.

2.1. Numerical simulation of contaminant transport

In this study, the remedial options processes are simulated
by BIOPLUME III. It is a two-dimensional finite difference model
for simulating the natural attenuation of organic contaminants in
groundwater due to the processes of advection, dispersion and
biodegradation [29]. BIOPLUME III has been applied previously in
many studies [25,30,31].  The general equations are [29]:

∂Hb

∂t
= 1

Rh

[
∂

∂xi

(
bDij

∂H

∂xj

)
− ∂(bHVi)

∂xi

]
− H′W

n
(1a)

∂Pb

∂t
=

[
∂

∂xi

(
bDij

∂P

∂xj

)
− ∂(bPVi)

∂xi

]
− P ′W

n
(1b)

Rh = 1 + �b

n
Kh (1c)

where H is the concentration of hydrocarbon [M/L3]; H′ is the con-
centration of hydrocarbon in source or sink fluid [M/L3]; n is the
effective porosity; b is the saturated thickness [L]; W is the volume
flux per unit area [L/T]; Vi is the seepage velocity in the direction
of x [L/T]; Rh is the retardation factor for hydrocarbon; Dij is the
coefficient of hydrodynamic dispersion [L2/T]; xi and xj are Carte-
sian coordinates; t is time [T]; �b is the soil bulk density [M/L3];
Kh is the distribution coefficient [L3/M]; P is the concentration of
oxygen [M/L3]; P′ is the concentration of oxygen in source or sink
fluid [M/L3];

It assumes the aerobic biodegradation process using oxygen
as electron acceptors can be simulated as an instantaneous reac-
tion. The biodegradation of contaminants using aerobic electron
acceptor is simulated using the principle of superposition with the
general equations as follows [32]:

�HSO = P

FO
; P = 0 if H >

P

FO
(2a)

�POS = HFO; H = 0 if P > HFO (2b)

where �HSO is the loss in the contaminant concentration due to
biodegradation using oxygen; �POS is the concentration loss in the
electron acceptor; and FO is the stoichiometric ratio for oxygen.

2.2. Fuzzy simulation

Fuzzy sets are used for addressing uncertainties derived from
fuzziness or vagueness of input parameters in subsurface model-
ing. These inputs can be received in terms of linguistic judgments,
which can then be converted to the form of fuzzy sets [33]. The
general notation of fuzzy sets can be presented as follows [34]:

A(x) = {(x, �A(x)), x ∈ X, �A(x) ∈ [0,  1]}  (3)

where X = {x} is a universe set of elements, A(x) is a fuzzy set of X, and
�A(x) is the degree of membership for x in A. �A(x) is a number in the
range 0–1, with 1 representing full membership and 0 representing
non-membership. The closer �A(x) is to 1, the more likely it is that
an element x belongs to A. Inversely, the closer �A(x) is to 0, the less
likely it is that x belongs to A. The ˛-cut level (as a useful concept
in fuzzy set theory) is defined as the set of elements that belong to
fuzzy set A, described as A˛ = {x|�A(x) ≥ ˛}. The support of the fuzzy
set A is defined by the classical set as supp(A) = {x|�A(x) > 0}, and the
convexity condition ensures that the support is in an interval [35].
In this study, the prediction of pollutant concentrations is devel-
oped based on fuzzy simulation, and the primary procedures of
a fuzzy simulation include: (1) divide the membership domain of
fuzzy parameters F1, F2, F3,. . .,  and FN into a series of equally spaced
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Fig. 1. General fr

-cut levels, the lower and upper bounds of each fuzzy parameters
re obtained at each ˛-cut; (2) select one ˛-cut level and transfer
uzzy parameters into various permutations by fuzzy transforma-
ion techniques (i.e. combine the upper and lower points for the
elected ˛-cut into 2N distinct permutations [36]); (3) use these
ermutation as inputs for simulation models and generate 2N of
utputs, (4) form the lower and upper limits of different ˛-cut lev-
ls of the final simulation outputs, (5) repeat the above mentioned
teps for all ˛-cut levels. The fuzzy sets of the predicted item are
pproximated based on the obtained lower and upper bounds of the
imulation outputs under various ˛-cut levels. For more detailed
escriptions of fuzzy simulation, the readers are referred to Prasad
nd Mathur [25].

.3. Fuzzy TOPSIS

The decision process for selecting an appropriate alternative
s usually faced with uncertainties that may  be associated with
uman judgment regarding relative weights, inadequate informa-
ion, and evaluation criteria values. In this study, we propose to
se the fuzzy TOPSIS method to tackle such uncertain information.
ssentially, the corresponding decision matrix elements and the
elative weights will be presented as fuzzy sets. The related distri-
ution information (i.e. membership functions) may  be obtained
rom either fuzzy simulation or public survey.

The first step of a fuzzy TOPSIS is to normalize the fuzzy decision
atrix Dij if necessary and then obtain the ideal and negative-ideal

olutions by the following equations [37]:

ij = (aij, bij, dij), (i = 1, 2, . . . , m, j = 1, 2, . . . , l) (4a)

I
j = max

i
dij (4b)

NI
j = min

i
aij (4c)

 =
{

DI
1, DI

2, . . . , DI
l

}
(4d)

I =
{

DNI
1 , DNI

2 , . . . , DNI
l

}
(4e)
here aij and dij are the lower and upper bound of Dij , respectively;

ij is the core of Dij; i is the index of alternatives; m is the total
umber of alternatives; j is the index of evaluation criteria; l is the
ork for SFMCDA.

total number of evaluation criteria; I and NI are the ideal solution
and negative ideal solution, respectively.

Secondly, the fuzzy relative closeness of each alternative is com-
puted by solving the following non-linear programming model at
each alpha-cut level [37]:

(RCi)
L
˛ = Min

√∑l

j=1

[
wj((Dij)

L
˛ − DNI

j
)
]2

√∑l

j=1

[
wj((Dij)

L
˛ − DNI

j
)
]2

+
√∑l

j=1

[
wj((Dij)

L
˛ − DI

j
)
]2

(5a)

where

(wj)
L
˛

≤ wj ≤ (wj)
U
˛

, j = 1, 2, . . . , l (5b)

(RCi)
U
˛ = Max

√∑l

j=1

[
wj((Dij)

U
˛ − DNI

j
)
]2

√∑l

j=1

[
wj((Dij)U

˛ − DNI
j

)
]2

+
√∑l

j=1

[
wj((Dij)

U
˛ − DI

j
)
]2

(5c)

where

(wj)
L
˛

≤ wj ≤ (wj)
U
˛

, j = 1, 2, . . . , l (5d)

where Dij , wj and RCi are the fuzzy decision matrix, fuzzy weight
and fuzzy relative closeness, respectively; (Dij)˛

, (wj)˛
and (RCi)˛

are the elements of Dij , wj and RCi under the ˛-cut level of ˛; (Dij)
L
˛

and (Dij)
U
˛

are the lower and upper bounds of (Dij)˛
; (wj)

L
˛

and (wj)
U
˛

are the lower and upper bounds of (wj)˛
; (RCi)

L
˛ and (RCi)

U
˛ are the

lower and upper bounds of (RCi)˛.
Thirdly, the fuzzy relative closeness is defuzzified by the follow-

ing equation [37]:

(RCi)
∗
ALC = 1

N

N∑
k=1

(
(RCi)

L
˛k + (RCi)

U
˛k

2

)
, i = 1, 2 . . . , m (6)

where (RCi)
∗
ALC is the relative closeness represented by averaging

level cuts as suggested by Fortemps and Roubens [38]; ˛1, . . .,
˛N are different alpha levels satisfying 0 ≤ ˛1 < . . . < ˛N ≤ 1; k is the

index of ˛-cut level; N is the total number of ˛-cuts.

Finally, alternatives are ranked in terms of their defuzzified rel-
ative closenesses. The alternative with the highest ratio is deemed
the best option.
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Table 1
Remediation alternatives considered.

Alternative ID Description

NA Natural attenuation
ENA1 Enhanced natural attenuation with only one injection

well (0.396 L/s) at the location (253, 458)
ENA2 Enhanced natural attenuation with two injection wells

(0.396 L/s) at locations (253, 458) and (253, 397)
PT1  Pump and treat with only one extraction well

(0.566 L/s) at location (253, 458)
PT2 Pump and treat with two extraction wells (0.566 L/s) at

locations (253, 458) and (253, 397)
ENA + PT One extraction well-pump-and-treat (0.566 L/s)

combined with one injection well-enhanced natural

school, residential area, supply well and the center of the con-
tamination source. According to the SERM-based risk assessment
method [41], the membership functions of the fuzzy risk levels can

Table 2
Fuzzy weights.

ID Fuzzy values

Risk at the contamination source center Support = (0.16, 0.2), core = 0.18
Risk at the residential area Support = (0.1, 0.14), core = 0.12
Risk at the supply well Support = (0.21, 0.27), core = 0.24
Risk at the primary school Support = (0.14, 0.18), core = 0.16
Installation cost Support = (0.08, 0.12), core = 0.1
Operation and maintenance cost Support = (0.17, 0.23), core = 0.2

Risk at the contamination source centera Support = (0.17, 0.23), core = 0.2
Risk at the residential areaa Support = (0.12, 0.18), core = 0.14
Risk at the supply wella Support = (0.23, 0.29), core = 0.26
Fig. 2. Conceptual map  of the contaminated site.

.4. Simulation-based fuzzy-MCDA method

Integration of the contaminant transport modeling, fuzzy sim-
lation and fuzzy TOPSIS into a general framework lead to the
ormulation of a simulation-based fuzzy-MCDA (SFMCDA) method.
he detailed operation process of an SFMCDA can be summarized
s follows:

Step (1): Identify m alternatives (i.e. a1, a2,. . .,  am), and l evaluation
criteria (i.e. c1, c2,. . .,  cl) for an MCDA problem, and obtain fuzzy
weightings for the evaluation criteria.
Step (2): Select an ˛-cut level for the fuzzy parameters of the
simulation model; use fuzzy simulation to calculate the interval
values for contaminant concentration under various scenarios of
alternatives.
Step (3): Generate the performance matrix and weightings, deter-
mine the ideal solution and the negative ideal solution by Eqs.
(4a)–(4e).
Step (4): Compute the fuzzy relative closeness of each alternative
by solving the NLP models by Eqs. (5a)–(5d).
Step (5): Repeat steps 2–4 for the other ˛-cut levels, and the overall
ratings of alternatives can be obtained by Eq. (6).
Step (6): Rank alternatives in terms of their defuzzified relative
closenesses.

. Case study

.1. Background and system configuration

A hypothetical petroleum-contaminated site was adopted as
 case study to demonstrate the capability of SFMCDA for deter-
ining the most desirable remediation alternative. Fig. 2 shows a

onceptual diagram of the study system. The contaminant plume
as assumed to be produced by a leaking underground storage

ank (UST) that was supposed to be removed after contamination
as been detected. The concentration of the representative organic
ollutant (i.e. benzene) was supposed to be highly exceeding SERM
Saskatchewan Environment and Resource Management) ground-
ater guidelines. The reason for choosing benzene was  due to its
ell-known toxicity where direct exposure may  cause acute non-

ymphocytic (myelogenous) leukemia (ANLL) and a variety of other
lood-related disorders in humans [39,40].  The receptors include:
i) a primary school, about 156 m to the downstream of the contam-
nation source; (ii) a municipal drinking water supply well, about

1 m to the upstream of the plume center; (iii) a residential area,
bout 158 m at the southwest of the plume center and (iv) the
ontamination source center (i.e. the starting location of the con-
amination). All of the receptors are considered at risk (the details of
attenuation (0.396 L/s) at locations (253, 458) and
(253, 397), respectively

the site overview are given in Section S1, Supplementary material).
Thus, this site may  pose significant threats to the surrounding com-
munities and the environment; urgent remediation measures are
needed for cleaning up the contaminated groundwater system. As
there are many possible methods to deal with this, the decision
makers need to know which remediation alternative is the most
cost-effective in terms of risk and cost. The proposed methodol-
ogy will be used for providing decision support for identifying the
desired remediation option for the study site.

The remediation technologies, well locations and its pumping
rates are mostly referred to Prasad and Mathur [25] where a trial
and correction procedure is used for identifying optimal operat-
ing conditions. Six remediation scenarios were designed for the
contaminated site (in Table 1). Fig. 3 shows the conceptual design
for the remediation wells. Each remediation option operates for
2 years. The pumping rates of the extraction wells and injection
wells were kept constant at 0.566 and 0.396 L/s, respectively. The
injection wells supply O2 dissolved in the injected water at a con-
centration of 0.008 g/L.

Six criteria were used for the evaluation, including both envi-
ronmental and economical factors. The criteria weights were
obtained through public survey, expert consultation and weights
as described in Li et al. [3].  As shown in Table 2, they are expressed
as triangular fuzzy sets. In defining membership functions, if the
weight of installation cost is estimated to be within an interval of
[0.08, 0.12], it may  be reasonable to describe this criterion with
a fuzzy set of “about” 0.1 using triangular membership functions.
The other weights are defined similarly. Environmental perfor-
mance was determined based on the dissolved concentrations of
benzene in the groundwater beneath the locations of the primary
Risk at the primary schoola Support = (0.12, 0.16), core = 0.14
Installation costa Support = (0.06, 0.1), core = 0.08
Operation and maintenance costa Support = (0.16, 0.2), core = 0.18

a The values are the new setting weights.
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Fig. 3. Numerical do

e established by comparing the simulated benzene concentration
ith the SERM guideline. The contaminated groundwater in the

ubsurface can thus be categorized into five risk levels: “Clean”,
Practically not risky”, “Slightly risky”, “Risky”, and “Highly risky”
see Table S2, Supplementary material). The membership functions
f these fuzzy events are shown in Fig. 4A. In order to construct the
uzzy decision matrix, an evaluation mechanism must be estab-
ished for converting all the triangular fuzzy membership functions
nto quantitative values (i.e. scoring). We  chose a scale from1 to 9
o express them, as shown in Fig. 4A. For example, the benzene con-
entrations at these receptors may  fall within the interval [0.001,
.25] mg/L; the rating may  be defined as 9 when the concentration

s less than 0.001 mg/L, 1 when the concentration is higher than
.25 mg/L, and 2–8 when the concentration are within 0.001 and
.25 mg/L. Accordingly, the higher score means the receptor would
uffer from a lower risk level.

The economical factors include both installation and operation
osts. The cost coefficients are also based on a literature survey and
xpert consultation (in Table 3). The costs for different remedial
echnologies mainly include installation, operation, analysis and
abor (i.e. the total cost is the sum of these components). Except for
he installation cost, the other items may  increase with the incre-

ent of operation years. It presumes that the analytical services for
ystem monitoring will be conducted four times each year, and the
ost is about 0.5 to 0.8 × 103 $ per event according to AFCEE [42].

t also assumes that the performance labor cost would vary for dif-
erent alternatives, and the annual costs are also referred to AFCEE
43]. The operation cost is estimated based on a constant injection
r pumping (cost per L/s yr), according to Prasad and Mathur [25].
of the study system.

Similar to the identification of risk levels, the membership func-
tions of the related fuzzy remediation cost levels were established
as follows: “low cost level”; “low-to-medium cost level”; “medium
cost level”; “medium-to-high cost level”; and “high cost level” (see
Tables S3 and S4, Supplementary material). The membership func-
tions of these fuzzy events are shown in Fig. 4B and C. We  also need
to convert all triangular fuzzy membership functions into scores
using the scale from 1 to 9. The higher the score, the less costly the
remediation alternative is.

3.2. Result analysis

Hydrological parameters, such as the porosity (�) and aquifer
dispersion coefficient (D), can vary significantly and exhibit high
spatial variability even within the same site, leading to uncertain-
ties in the subsurface modeling results [27]. In a real case, the
parameters can be obtained by field measurements (i.e. use groups
of pumping tests or slug tests in different regions), literature sur-
vey, or expert consultation [28]. For example, based on the experts’
knowledge of the concerned aquifer and also his experience on
other aquifers (i.e. longitudinal dispersivity affecting contaminant
transport at a certain scale in an aquifer), a triangular fuzzy mem-
bership function of a hydrogeological parameter can be defined by
specifying the most credible, the lowest and the highest possible
values. In this study, the effective porosity of the sand media nor-

mally varies from 0.2 to 0.4 [43]. So, the possibility distribution
of this parameter is defined as a fuzzy set with a core of 0.3 and
a support of (0.2, 0.4). According to Rifai et al. [29] and Shieh and
Peralta [30], the longitudinal dispersivity is also assumed fuzzy and
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Fig. 4. Membership functions of scores related to (A) risk levels, (B

escribed by a core of 15 m and a support of (11, 19) m.  Trans-
erse dispersivity is dependent with longitudinal dispersivity by a
ultiplicative factor of 0.1. The hydraulic conductivity of the sand
edia falls within the range from 10−5 to 10−3 m/s  [44]. Based

n sensitivity analysis (shown in Table 4), the concentration val-
es of the maximum plume concentration obtained by BIOPLUME

II model are found to be less affected by hydraulic conductivity
ompared with porosity. Therefore, the uncertainty of conductiv-
ty is not accounted for in this study. The parameters used in the
ypothetical simulation system are given in Table 5.

.2.1. Fuzzy simulation results

The remediation period is set to 2 years for the various reme-

iation alternatives. Through fuzzy simulation, the distributions of
he benzene concentration at the study site under various scenar-
os could be obtained. In this study, one simulation run on a 3 GB
allation cost levels and (C) operation and maintenance cost levels.

RAM and 1.86 GHz Duo-Core PC took about 30 s. As the fuzzy vertex
method required many rounds of simulation, the total simulation
time was about 1 h. Fig. 5 presents the most likely distributions for
the plume contamination (i.e. when the membership degree is 1)
for the six remediation scenarios.

In general, the results in Fig. 5 show that the concerned reme-
diation actions could reduce benzene concentrations to various
degrees. For the same technology, a two-well implementation plan
would perform better than a single-well one. For example, in terms
of pump-and-treat operations, the highest benzene concentration
obtained from one-well operations would be 2.332 mg/L; it would
decrease to 0.288 mg/L when two wells are in operation. In addition,

it appears that bioremediation is cheaper than pump-and-treat.
For example, the base costs of ENA1 and ENA2 are 115.1 and
125.3 × 103 $, respectively, and those of PT1 and PT2 are 173.6 and
197.5 × 103 $, respectively. Thus, the bioremediation-based options
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Table 3
Cost function coefficients.

Type of cost (103 $) NA ENA1 ENA2 PT1 PT2 ENA + PT

An automatic mixing systema – 20–25 20–25 – – 20–25
A  slow-release substrate systema – 3–10 3–10 – – 3–10
Pumping system – – – 10–15 10–15 –
Injection and monitoring well

installation costs (per well)a
1.5–2.2 1.5–2.2 1.5–2.2 1.5–2.2 1.5–2.2 1.5–2.2

Analytical services for system
monitoring (per event)a

0.5–0.8 0.5–0.8 0.5–0.8 0.5–0.8 0.5–0.8 0.5–0.8

Injection (oxygen) not including
labor (per L/s year)b

– 4.755 4.755 – – 4.755

Pumping operation not including
labor (per L/s year)b

– – – 15.85 15.85 15.85

Performance labor cost (per
year)b

5.6–8.4 42.5–63.2 44.9–67.3 63.2–86.8 65.6–90.4 65.6–90.4

Total  installation costc [6.5, 7, 9.6] [31, 38.9, 46.8] [31.5, 39.8, 49] [18, 22.4, 26.8] [18.5, 23.7, 29] [37.5, 45.8, 54]
Operation and maintenance cost

(two year)c
[16.8, 19.6, 22.4] [94.4, 115.1, 135.8] [102.9, 125.3, 147.7] [150, 173.6, 197.2] [172.7, 197.5, 222.3] [158.5, 183.3, 208.1]

a The values are referred to AFCEE [42].
b Prasad and Mathur [25].
c The fuzzy sets are defined as [p, q, r] where p and r are the lower and upper bounds o

from  AFCEE [42] and Prasad and Mathur [25].

Table 4
Sensitivity of model results to changes in hydrogeologic parameters.

Variable Change in
parameter (100%)

Change in max. plume
concentration (mg/L)

Longitudinal dispersivity
10 0.00578

5 0.00289

Effective porosity
10 0.00279

5 0.00145

Hydraulic conductivity
10 0.00023

5 0.00013

w
i
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1
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t
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t
p
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Storage coefficient
10 0.00012

5 0.00005

ould lead to higher benzene removal efficiencies at the contam-
nation source center than the pump-and-treat-based ones. From
ig. 5, the maximum concentrations after remediation would be
0.374, 0.006, 0.001, 0.601, 0.108, and 0.034 mg/L for alternatives
A, ENA1, ENA2, PT1, PT2, and ENA + PT, respectively.

From Fig. 5, the plume areas are about 36,000, 26,100, 58,050,
nd 25,200 m2 for alternatives ENA1, PT1, ENA2, and PT2, respec-
ively. The pump-and-treat-based options show relatively better
ontrol on the overall plume area. The NA option does not seem
o result in a large plume area; this is because the solute transport
rocess under natural attenuation is not influenced by pumping

ctions. The difference of the plume areas among various remedi-
tion alternatives may  lead to varied benzene concentrations at a
pecific receptor location. For example, the benzene concentrations

able 5
arameters used in the simulation model.

Input parameter Values

Grid size 20 × 20
Cell size 30.5 × 30.5 m
Hydraulic conductivity 1.99 × 10−4 m/s
Anisotropic factor 1.0
Aquifer thickness 3.05 m
Hydraulic gradient 0.005
Longitudinal dispersivity Support = (11, 19), core = 15 m
Transverse dispersivity Support = (1.1, 1.9), core = 1.5 m
Effective porosity Support = (0.2, 0.4), core = 0.3
Retardation factor 1.0
Recharge 3.9 × 10−10 m3/s
Background concentration of oxygen 1 mg/L
Concentration of oxygen in injected water 0.008 g/L
Storage coefficient 0.2
Boundary conditions Constant head
f a triangular fuzzy set and q is the most-likely value; the related data are adapted

in the residential area would be 0.453, 0.914, 0.753, 0.152, 0.028,
and 0.116 mg/L from remediation options NA, ENA1, ENA2, PT1,
PT2, and ENA + PT, respectively. It is therefore difficult to determine
which remediation alternative performs better by using a single
standard. The predicted results for the benzene concentrations
under the various conditions will be used for further comparisons.

Fig. 6 shows the benzene concentrations for the two locations,
the residential area and the supply well, under various remedia-
tion scenarios. Since the benzene concentration in the supply well
is less than 0.001 mg/L in scenario ENA + PT, it is not presented in the
respective figure. The results demonstrate that the predicted ben-
zene concentrations would present as fuzzy sets. The uncertainty
degree of the results varies with the changes of fuzzy member-
ship degree (FMD). At a lower FMD, the intervals of the benzene
concentrations are wider, implying a higher vagueness in the pre-
dicted benzene concentrations; when FMD  increases, the results
would become more deterministic.

From Fig. 6, it can also be seen that the fuzzy simulation could
provide quantitative information of the benzene contamination
under uncertainty. However, the vagueness in the predicted out-
puts makes it arduous to conduct a direct comparison among
the various remediation alternatives. According to Fig. 6A, in the
residential area, remediation scenario PT2 would have the best per-
formance as the benzene concentration is the lowest (i.e. ranging
from 0.006 to 0.087 mg/L, with the average value being 0.024 mg/L).
Scenario ENA1 performs the worst as the benzene concentration
falls within the interval of [0.326, 0.754] mg/L. It is difficult to com-
pare scenarios NA, ENA2, PT1 and ENA + PAT, as their membership
functions overlap with each other. From Fig. 6B, in the supply well,
scenario ENA + PT achieves zero concentration; PT2 performs the
second best as the benzene concentration ranges from 0.004 to
0.097 mg/L, with the average value being 0.04 mg/L. Scenario NA
has the worst performance as the benzene concentration would
reach up to 3.15 to 3.394 mg/L. Scenarios ENA1, ENA2 and PT1 are
mingled together and hard to differentiate.

3.2.2. Fuzzy performance matrix
Since the six proposed evaluation criteria are assessed using

the same scoring scale, a normalization process won’t be neces-
sary. Based on the fuzzy simulation results, along with the risk

and cost analyses, we generated the fuzzy performance matrix,
given in Table 6. Their values were described as interval numbers
for a variety of membership degrees (i.e.  ̨ levels). The perfor-
mance matrix indicated that the enhanced natural attenuation and
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Fig. 5. Mean distributions of benzene conc

ump-and-treat remediation options, to a varied extent, could
educe the risk of contamination at the different receptors. For
xample, the c2 scores for scenarios NA and ENA1 are both 1 at the
embership degree of 1 (compare also Fig. 4), indicating a “Highly

isky” condition; for scenario ENA2, the c2 score is (1, 3) at the
embership degree of 0.5, implying a “Risky” to “Highly risky” con-

ition. In addition from Table 6, it is found that a single remediation
lternative may  have notably different mitigation effects for the dif-
erent receptors. For example, ENA2 may  bring a higher reduction
f contamination risk at the source center (i.e. the c1 scores are in
he range of 6–9) than the other remediation alternatives; PT2 may

ave a better performance for the school area (c4).

Moreover, the costs associated with different remediation sce-
arios also have large variations (c5 and c6 in Table 6). The scenario
A is the least costly, followed by ENA1; scenario ENA + PT is the
ions at the study site for the six scenarios.

most expensive. Since the above-mentioned data are character-
ized by uncertainties and contradictions, further tradeoff analysis
is therefore needed for supporting remediation decisions.

3.2.3. Inexact ranking results
The proposed fuzzy TOPSIS method is then used for investigat-

ing the impact of uncertainties and multi-criteria performances on
rankings. Fig. 7 shows the ranking distributions before defuzzifi-
cation (i.e. a process to evaluate a fuzzy set by a crisp value). The
results of the relative closeness (RC) are also presented as possi-
bilistic distributions, where most of the curves deviate significantly

under different fuzzy membership degrees. It is also indicated
that, a number of curves are overlapping with each other and can
hardly be differentiated. For example, at the fuzzy membership
degree of 0.75, the lower bounds of scores for scenarios NA, ENA1,
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Fig. 6. Membership functions of benzene concentrations in (A) the re

NA2, PT1, PT2 and ENA + PT are 0.385, 0.251, 0.356, 0.195, 0.243
nd 0.434 respectively, and the upper bounds are 0.426, 0.353,

.425, 0.233, 0.365 and 0.506, respectively. The relative close-
ess value is computed as ratio of NIS/(IS + NIS), where NIS and

S are overall distance of each alternative from the negative ideal
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ig. 7. Membership functions of the ratings at the study site associated with the six
cenarios.
tial area and (B) the supply well for different remediation scenarios.

solution and ideal solution, respectively. The alternative with the
highest ratio is far away from negative ideal solution and close to
ideal solution, which is deemed as the best option. Therefore, sce-
narios ENA1 and PT2 are likely ranked in the 4th or 5th position.
Generally, the inexact ranking results can hardly be used directly
for decision making. A further defuzzification effort is needed.

By computing the relative closeness of the averaging level
cuts by Eq. (6),  the overall ratings for all the alternatives (in the
order: EN, ENA1, ENA2, PT1, PT2 and ENA + PT) are 0.4093, 0.3149,
0.383, 0.2063, 0.3277, and 0.4883, respectively. Therefore, the final
ranking result would be: ENA + PT > NA > ENA2 > PT2 > ENA1 > PT1.
Obviously, the system tends to find the remediation strategy with
a lower risk of environmental impact and a lower remediation
cost, although all of the designed remediation alternatives may not
be efficient enough as the score values are far lower than 1. Sce-
nario ENA + PT is the most expensive alternative, but it is deemed
the best option for the study site remediation. Scenario NA is the
2nd best option followed by scenario ENA2; this is because nat-
ural attenuation is the cheapest option, though it hardly reduces
the receptors’ risk (other options also hardly reduce the receptors’
risk to acceptable levels, due to the limited remediation time); and
enhanced natural attenuation is more cost-effective compared with
the pump-and-treat operation using the same well settings. Hence,
it is reasonable that ENA1 would outrank PT1, but be inferior than

PT2 due to its lower remediation efficiency.

The proposed SFMCDA methodology assessed six criteria, which
were described by a set of linguistic variables, to rank six remedi-
ation options under uncertainty. For comparison, if no uncertainty



430 A.L. Yang et al. / Journal of Hazardous Materials 213– 214 (2012) 421– 433

Table  6
Results of the fuzzy performance matrix.

Remediation scenarios Alpha levels c1 c2 c3 c4 c5 c6

NA

0 1 1 1 (2, 4)a 8 9
0.25  1 1 1 (3, 4) 8 9
0.5  1 1 1 (3, 4) 8 9
0.75  1 1 1 (3, 4) 8 9
1  1 1 1 3 8 9

ENA1

0  (4, 9) 1 1 1 (1, 3) (4, 6)
0.25  (4, 8) 1 1 1 (1, 2) (4, 6)
0.5  (4, 7) 1 1 1 (1, 2) (5, 6)
0.75  (4, 7) 1 1 1 2 5
1 6  1 1 1 2 5

ENA2

0  (6, 9) (1, 4) (1, 4) (1, 4) (1, 3) (4, 6)
0.25  (6, 9) (1, 4) (1, 2) (1, 2) (1, 2) (4, 5)
0.5  (7, 9) (1, 3) (1, 2) (1, 2) (1, 2) (4, 5)
0.75  (8, 9) 2 (1, 2) (1, 1) 2 5
1 8  2 1 1 2 5

PT1

0  1 (1, 3) (1, 3) 4 (4, 6) (1, 3)
0.25  1 (1, 2) (1, 2) 4 (4, 6) (1, 3)
0.5  1 2 (1, 2) 4 5 (2, 3)
0.75  1 2 2 4 5 (2, 3)
1  1 2 2 4 5 2

PT2

0  (1, 4) (2, 6) (2, 7) (4, 9) (4, 6) (1, 2)
0.25  (1, 3) (2, 5) (2, 5) (4, 8) (4,5) (1, 2)
0.5  (1, 3) (2, 4) (2, 4) (5, 8) 5 (1, 2)
0.75  (1, 2) (3, 4) (2, 4) (6, 7) 5 1
1 2  4 3 7 5 1

ENA  + PT

0 (1, 9) (1, 2) 9 (2, 3) (1, 2) (1, 3)
0.25  (2, 9) 1 9 (2, 3) (1, 2) (1, 3)
0.5  (2, 9) 1 9 2 1 (1, 2)
0.75  (2, 5) 1 9 2 1 2
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a Note: (a, b) means an interval value.

s considered (assume all fuzzy sets are set using deterministic val-
es at their most likely value), the relative closenesses of the six
lternatives become 0.401, 0.314, 0.369, 0.202, 0.323, and 0.463,
espectively. Although these values are lower than the defuzzi-
ed ones, the deterministic approach leads to the same ranking
s the fuzzy one using the most likely condition. However, it pro-
uces only a crisp (i.e. precise) point estimate for the score of each
lternative. From Fig. 7, we can see that the deterministic values
re contained within the results of the SFMCDA. SFMCDA could
roduce a fuzzy estimate rather than a crisp point estimate or
n exaggerated fuzzy estimate (i.e. the results may  coincide with
he results obtained without considering uncertainty) [36]. In this
tudy, triangular fuzzy membership functions were used to reflect
arameter uncertainty due to information imprecision. Since fuzzy
imulation considers all possible combinations of parameter val-
es, and the width of the support base of the membership function

s an important factor that affects the results [11]. It is possible that
he simulation outputs might vary significantly if different shapes
f fuzzy possibility distributions (e.g. trapezoidal or polygonal) are
sed. This may  lead to different ranking results.

.2.4. Discussions
The application of SFMCDA was demonstrated by a hypotheti-

al benzene-contamination case study, which was much simpler
n magnitude than a possible real-world problem. This was to
raw a clear picture of the problem-solving procedures and high-

ight the effectiveness of the proposed methodology. In real-world
pplications, a number of issues may  be encountered in apply-
ng the proposed methodology due to increased complexities: (i)

he contaminant transport process is more complicated (i.e. due
o increased heterogeneity and anisotropy of aquifer media) which
ould bring time-consuming computations in fuzzy simulation and
xtensive efforts in model calibration and verification; (ii) the
9 2 1 2

characterization of the uncertainties in the groundwater remedia-
tion system may  need more careful site survey, literature review
or expert consultation efforts; (iii) the remediation techniques,
operation time, and cost analysis may  be site specific; this brings
difficulties in scenario design and identification of suitable evalua-
tion criteria and weightings.

At present, the available BIOPLUME III software cannot do an
automatic run for a loop simulation. We  actually did this manually,
by inputting the data many times when running the fuzzy sim-
ulation. Since the test example is not very large (one simulation
requires about 30 s of CPU time), we managed to obtain the sim-
ulation results in a reasonable time. For a complex site (i.e. more
grid cells, complex boundary and initial conditions, etc.), it may not
feasible to rely on manual input. It will be more preferable to use
other software packages (such as UTCHEM or BIOF&T) which are
more programmable for automatic running. Since this paper aimed
to focus on the development of a novel framework for evaluating
the trade-offs between risk and cost, and finding the best remedi-
ation alternatives while hedging against parameter uncertainties,
we chose BIOPLUME III for easy configuration. The validity of such
a model for simulating enhanced natural attenuation, pump-and-
treat, and natural attenuation processes was  well demonstrated by
Prasad and Mathur [25]. The same physiology shall apply to other
models and remediation processes.

In real-world applications, identification of the fuzzy dis-
tribution of a hydrogeological parameter needs careful site
investigations. Strictly speaking, if a site is highly heterogeneous,
every grid of the numerical domain should have an individual fuzzy
membership function of the hydrogeological parameter. However,

the data is difficult to obtain due to cost limitations. However, with
some simplifications, a heterogeneous domain can be divided into
a number of regions, where each region is assumed to be homo-
geneous. This could be determined based on the geological survey
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ig. 8. Remediation costs vs. remediation efficiency at the supply well for different

esults. Then for each region, a pumping test campaign can be con-
ucted to get a set of deterministic values for the hydrogeological
arameter. The fuzzy membership function can then be generated
ased on the surveyed data. Eventually, we will have a number
f fuzzy sets for the hydrogeological parameter. The greater the
umber of the regions to be divided, the more the pumping test
ampaigns is needed. If the entire site is considered homogeneous,

 single pumping test campaign would be acceptable.
In the remediation decision analysis process, the uncertainties

an be related to parameter uncertain in natural porous media
45], risk assessment [46], alternative selection [3].  Fuzzy set
heory provides an efficient mechanism for carrying out appropri-
te reasoning processes when available information is uncertain,
ncomplete, imprecise, or vague [15]. The involvement of experts
as been identified as a critical aspect of the decision-making pro-
ess [47]. In fact, the subjectivity may  certainly exist in experts
nterviews. However, on one side, the weights value may  not be
iven randomly, which needs experts and stakeholders to make
rade-offs to finalize the weights. To a certain extent, given weight is

 relative objective process. On the other side, different experts may
ave different preferences on each evaluation criteria; it is thus we
ade the weight of each criterion an uncertain value. In this paper,

ur study focused on the application of fuzzy simulation and fuzzy
OPSIS decision analysis to the evaluation and ranking of reme-
iation alternatives instead of ‘decision by racking their brains’.
lmost of the aforementioned uncertainties associated with the
emediation decision analysis process were addressed. The pro-
osed method can reduce the subjectivity as much as possible.

Fig. 8 shows the remediation efficiency versus remediation cost
t the water supply well for 1–5 years pumping for the six reme-
iation alternatives. It is found that the tradeoff curve follows an
xponent trend (i.e. the remediation cost increases exponentially
ith the increase of the pumping duration). Scenario ENA + PT is

ound to be the most efficient, as almost 100% treatment efficiency
ould be obtained after only 1-year operation. Furthermore, at the
ame level of remediation cost (i.e. 223 × 103 $), scenarios ENA + PT

hows the highest efficiency (100%), followed by PT2 (98%) and
T1 (92%). Fig. 8 also presents the results for treatment years vs.
emediation costs under the most likely value. The installation costs
i.e. the remediation cost at the starting treatment year) for each
dial alternatives involving 1–5 years of pumping under the most likely condition.

remediation alternative are ca. 7.0, 38.9, 39.8, 22.4, 23.7, and
45.8 × 103 $, respectively. It can be observed that the costs for the
different remediation alternatives increase with the number of
operation years at stable increments of 9.8, 57.69, 61.57, 86.78,
98.75, and 91.66 × 103 $ per year; this is incurred by operation,
analysis and labor costs. Scenario PT2 has the highest increment, as
the pump-and-treat operation is costly. It can be obtained that the
costs associated with PT2 may  surpass that of ENA + PT after 4 years
of operation. Thus, from a long-term management point of view, a
time-series cost analysis could be added to the SFMCDA procedures
for addressing such effects.

The overall ratings of alternatives for this study case indicated
that the designed remediation alternatives may not be efficient
enough. Even the best choice ENA + PT, with a score value of 0.4883
was far lower than 1. In real world applications, there are many
remediation techniques and their operation conditions. A pre-
screening or pre-analysis effort is necessary in order to reduce the
number of alternatives [6].  For example, at a specified site, if a sin-
gle remedial technology is to be considered, the most cost-efficient
configuration of well numbers, well locations and pumping rates
in applying such a technology could be identified first using an
optimization model; then this technology with optimized operat-
ing parameters could be considered as a potential alternative for
further ranking. It is thus suggested to integrate both decision anal-
ysis and optimization into a general framework for better decision
making.

In many practical applications, different experts/stakeholders
may  have different preferences on evaluation criteria, which may
lead to significant variations of the weighting levels even for the
same criteria. Thus, it should be appreciated that if the weights of
the evaluation criteria change, the ranking results may be differ-
ent. For example, if the experts consider “less importance” for the
cost and risk at the primary school area, and “high importance”
for the risk at the locations of source zone, residential area and
supply well, the weights of the six criteria may change to a new
set of values (as shown in Table 2). The scores for alternatives NA,

ENA1, ENA2, PT1, PT2 and ENA + PT would become 0.3589, 0.3156,
0.3937, 0.1831, 0.3136 and 0.5212, respectively. Then, the ranking
scheme would change to: ENA + PT > ENA2 > NA > ENA1 > PT2 > PT1.
Scenario ENA + PT still ranks at the top due to its superior
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erformances at the contamination source center and the supply
ell. The ranking for scenarios ENA2 and NA has changed due to

he lowered weights of cost criteria. Scenarios with pump-and-
reat operation rank behind due to their poor performance at the
ource zone. This indicates that the ranking results are sensitive
o the weights of evaluation criteria. In real-world applications, it
s highly suggested that the weights be carefully selected by the
elated experts and stakeholders.

. Conclusions

In this study, the focus is on the formulation and computa-
ional aspects of the SFMCDA method. The following facts have been
ound:

1) Simulation models are important means to help analyze
contaminant fate and transport under different remediation
alternatives. Compared with the FMCDA method proposed by Li
et al. [3],  the proposed SFMCDA method could evaluate the envi-
ronmental performance by transport modeling under a variety
of remediating scenarios; the uncertainty associated with the
simulation system could be tackled effectively by coupling the
simulator and fuzzy vertex analysis that is less computationally
intensive.

2) The weights for the decision-making process are important
factors that would influence the ranking results. According to
Bonano et al. [47], the remediation alternatives were relied
on stakeholders’ inputs which were described as deterministic
values. Normally, different experts or stakeholders may  have
different preferences on each evaluation criterion, which may
lead to significant variations of the weights. It is thus important
to consider the weighting level of each criterion an uncertain
variable, and enable the selection of remediation alternatives
in an uncertain environment.

3) The ranking information obtained by SFMCDA takes uncer-
tainty into consideration and is more reliable than those by
conventional MCDA methods. Fuzzy TOPSIS decision analysis
could produce a fuzzy estimate rather than a crisp-point esti-
mate or an exaggerated interval estimate, where subjectivity
has been reduced as much as possible.

4) Generally, the proposed SFMCDA method has the following
advantages and innovations: (i) it systematically accounts for
inputs from pollution impact, cost analysis and stakeholders’
judgment; (ii) it is capable of addressing multiple-source uncer-
tainties associated with simulation parameters, prioritization
of criteria and description of alternatives; (iii) it could help mit-
igate subjectivity of human judgment through the application
of the fuzzy TOPSIS inference operation; (iv) it is also appli-
cable for other environmental systems. SFMCDA also has much
room for improvement. For example, the stochastic uncertainty
and fuzzy uncertainty may  occur in the same system, leading to
difficulties of applying the proposed method; a coupled fuzzy
stochastic simulation strategy may  have to be used; it could also
be combined with an optimization model to tackle continuous
variable problems.
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